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On the van Krevelen/Hoftyzer  relationship for the h igh- temperature 
l imiting viscosities of polymer melts 
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The van Krevelen/Hoftyzer limiting viscosities (T ~ oo) of polymer melts are often lower than the high- 
temperature viscosity of low-molecular weight liquids or the viscosity of air at 20°C and 1 bar. The origin of 
this surprising result is discussed. © 1997 Elsevier Science Ltd. All rights reserved. 
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In refs 1 and 2, van Krevelen and Hoftyzer discussed 
the temperature dependence of the viscosity of polymer 
melts. Viscosity r/c r at the critical molecular weight 
(transition from M +l to M 3'4 dependence) was 
plotted in the normalized Arrhenius diagram shown in 
Figure 1. At low temperatures (just above Tg) the line 
is curved and follows a Vogel/WLF course3; at 
high temperatures, the line is more or less straight 
suggesting true Arrhenius behaviour. Assuming such 
Arrhenius behaviour, the limiting flow-activation 
energy ET;(oc) and the limiting viscosity qcr(OC) are 
determined as indicated. 

According to the procedure of Figure 1, van Krevelen 
and Hoftyzer determined E~(vc) and r/cr(OC) for various 
polymers. The data sources are given in ref. 1 and 
examples of viscosity vs temperature curves can be found 
in ref. 1 or in Fig. 15.3 of ref. 2. The resulting activation 
energies (from Table 15.5 of ref. 2) are reproduced in 
Table 1. 

Interestingly, van Krevelen and Hoftyzer found an 
empirical correlation between the flow activation energy 
E~;(oc) and the limiting viscosity r/cr(OC). It is given by 
equation (15.38) of ref. 2 reading 

'°log ~]cr(OO) = -1 .4  - 0.085E,,(oc) (1) 

with the viscosity in Pa s and the activation energy in 
kJmol  - l .  The last column of Table 1 gives the limiting 
viscosity r/cr(OC ) as calculated with equation (1) from the 
activation energies given in Table 1. The remarkable 
point is that the limiting viscosity r/cr(OC ) decreases with 
increasing activation energy and drops to values as low as 
10 -8 Pa s (see also Fig. 15.5 of  ref. 2). 

For  non-associated and low-molecular weight liquids, 
the limiting viscosity (T---, oc) generally lies at about 
10 4 Pa s 4-6-. Moreover, the viscosity of air at 20°C and 
l bar is 1.7 x 10 Spas. Thus, the values of 10 -5 
10 8 Pa s shown by Table 1 are really surprising. 

Figure 2 shows that van Krevelen's limiting viscosity 
decreases with increasing Tg. This is related to the 
decrease in qcr(OC) with increasing activation energy 
[equation (1)] since Tg roughly increases with the flow 
activation energy (see Table 1 and refs 7 and 8). 
Assuming that the limiting viscosity of polymers exceeds 
that of low-molecular weight liquids (10 4pas),  we 

conclude from Figure 2 that van Krevelen's extrapola- 
tions fail for polymers with a Tg > 200 K. 

A tentative explanation for this failure is given in 
Figure 3. As an example, we take rigid PVC. This 
material has a Tg of 81°C. The thermal stability of the 
polymer prevents viscosity measurements at tempera- 
tures far above 200°C. So, the viscosity is measured for 
Tg/T > 0.70, i.e. most probably in the curved part of 
the plots of Figures 1 and 3. This would lead to an 
activation energy (Ea) that is too high [> E~(oo)] and 
a qcr(OO)-value that is too low (see extrapolated 
dashed line in Figure 3). In contrast, viscosities of low- 
Tg materials such a PE or PDMS can be measured 
at temperatures much further removed from Tg, i.e. 
at Tg/T values considerably lower than 0.70. For  such 
materials, the linear (Arrhenius) part of the curve will be 
reached more easily and the activation energy as well as 
7/cr(OO ) will approach the correct values. 

A semi-quantitative check of the idea is obtained 
by applying the WLF equation with the 'universal' 
constants Clg = 17 and C2g = 51°C 3 (subscript g denotes 
that Tg was taken as reference temperature). For  
simplicity, we omit the Arrhenius term which is some- 
times added for a better description at very high 
temperatures3; such omission hardly affects the results. 
We write the WLF equation in the Vogel form 3 

where 

In r//r/L = B / ( T -  T~) (2) 

Toc = Tg - -  C2g (3a)  

B = 2.303ClgC2g (3b) 

and r/~ is the assumed quasi-universal limiting value for 
T --~ oo: 

rio c = 1 0 - 4 - 1 0  -3 P a  s (4) 

The apparent activation energy defined in Figure 3 equals 

Ea = R d l n  q/d(1/T) = RBT2/(T - T~) 2 (5) 

If we extrapolate according to this apparent activation 
energy (as van Krevelen did), we do not find q~ but 
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Figure l Plot of viscosity qcr vs T~/T; for details see text; the dashed 
part of the curve is an extrapolation 

Table 1 Parameters of van Krevelen/Hoftyzer ~]cr correlation l2- First 
columns taken from Table 15.5 of ref. 2; r]~(ec) (third column) was 
calculated with equation (15.38) of ref. 2 (equation (1) of present 
paper). Subscript cr indicates that the viscosities were taken at the 
critical molecular weight, M~, where the M-dependence changes from 
M + t to M 34 

E,l(w) I°log r/~ (~c) 
Polymer Tg (K) (kJmol t) q in Pas 

Polyethylene 195 25 -3.53 
Polypropylene 253 44 5.14 
Polyisobutylene 198 48 5.48 
Polystyrene 373 59 -6.42 
Poly(vinyl chloride) 354 85 8.63 
Poly(vinyl acetate) 301 67 -7.10 
Poly(methyl methacrylate) 378 65 -6.93 
Poly(butyl methacrylate) 300 72 7.52 
Polybutadiene(cis) 171 26 -3.61 
Polyisoprene 220 23 - 3.36 
Poly(ethylene oxide) 206 27 3.70 
Poly(decamethylene succinate) 210 28 -3.78 
Poly(decamethylene adipate) 217 29 - 3.87 
Poly(decamethylene sebacate) 197 30 -3.95 
Poly(ethylene teraphthalate) 343 45 5.23 
Nylon 6 323 36 4.46 
Polycarbonate 414 85 - 8.63 
Poly(dimethyl siloxane) 150 15 2.68 

v i scos i ty  qo~ g i v e n  b y  (see Figure 3) 

In ~l/q~: = E a / [ R T ]  = B T / ( T  - T~)  2 (6) 

S u b t r a c t i n g  e q u a t i o n s  (2) a n d  (6), we f ind w i t h  e q u a t i o n  
(5) 

* T In q ~ / q ~  = B T ~ / [ T -  ~]- E , T ~ / [ R T  2] (7) 

W i t h  e q u a t i o n s  (3) (5) a n d  u s i n g  the  q u a s i - u n i v e r s a l  
W L F  p a r a m e t e r s  (17 a n d  51), we f ind:  

log  q,~ - l o g q L  = - [ E a / ( 2 . 3 0 3 R T ~ ) ]  

× [l - 4(R~/E~)] 2 

= - 5 2 . 2 E a [ 1  - x/(16.6/Ea)]2/  

× (Tx - 51) (8) 

in  w h i c h  E ,  is e x p r e s s e d  in kJ  r ee l  -1.  Figure 4 b e l o w  
s h o w s  t h a t  t he  ~/~ p r e d i c t e d  w i t h  th i s  e q u a t i o n  c o r r e l a t e s  
w i t h  the  l i m i t i n g  v i scos i ty  as  p r e d i c t e d  by  v a n  K r e v e l e n ' s  
e q u a t i o n .  T h i s  a g r e e m e n t  is n o t  pe r f ec t  w h i c h  m a y  be  

10 -2 

10 -4 

10 -6 

10 -8 

10-10 

Figure 2 

• T • Low mol. weight 

- -~d&- 
qcr(C~), Pas • 

l o " 

I I  

~ T g ,  K 

! I i + 

200 400 600 

Limiting viscosity ~/~r(~C) vs T~; data from Table l 

q *  

n 

/ 
. . . . . . . . . . . . . . . .  - - - ~  Ea 

/ ¢ "  

/ 
/ 

/ 
/ ~ Tg/T 

Figure 3 On the problems with van Krevelen's extrapolation to 
T ~ ~c. We use the abbreviations: 'r] - q~r and ~l< -- r/~(~). For high- 
Tg polymers, the measurements are done in the region where the line is 
still curved. This leads to an (apparent) activation energy E~ [defined by 
equation (5)] higher than the limiting activation energy, E,~(cc), defined 
(Figure l) for the high-temperature range where the process is really 
Arrhenius; moreover, the resulting rl~ value will be lower than the 
correct value q~. For low-Tg polymers, the viscosity measurements can 
be done at temperatures sufficiently above Tg (lower T~/-I values); the 
linear (Arrhenius) part of the line is reached more easily and the limiting 
values [E,/(oc) and rl*~] are approached better 

d u e  to  the  a p p r o x i m a t i o n s  u sed  ( u n i v e r s a l  W L F  
c o n s t a n t s ,  a u n i v e r s a l  v a l u e  for  q~,  o m i s s i o n  o f  a n  
a d d i t i o n a l  h i g h - t e m p e r a t u r e  A r r h e n i u s  t e rm) .  N e v e r -  
theless ,  v a n  K r e v e l e n ' s  r e su l t s  a re  r e a s o n a b l y  r e p r o d u c e d  
a n d  we conclude that the very low limiting viscosities 
given by van Krevelen and Ho/?yzer are not realistic 
and clue to application o f  an Arrhenius equation in a 
temperature range where the viseositt' is still changing in a 
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Figure 4 Limiting viscosity q~ calculated with equation (8) from the 
Tg values and activation energies of Table I vs the ~/~'s given in the last 
column of Table 1 (calculated with equation (1) : equation (15.38) of 

4 ref. 2). In equation (8), we used a z]~: value of 10- Pas (same value as 
for low-molecular weight liquids) 

non-Arrhenius way ( W L F / V o g e l ) .  The l imit ing values 
have no direct  physical  significance; they are merely 
pa rame te r s  in some useful cor re la t ions  11 . 

Theoretical implications 

Linear  viscoelast ic  theory  3 gives the general  fo rmula  

jo q = G(t) dt (9) 

where G(t) is the s t ress- re laxat ion  modu lus  o f  the 
mate r ia l  and  r/ the viscosi ty at  zero s train rate.  F o r  
low-molecu la r  weight  l iquids and na r row re laxat ions  (as 
usual  in such l iquids at  high temperatures) ,  this equa t ion  
reduces to 5'6 

q ,.~ Go T (10) 

where Go is the shear  modu lus  o f  the rigid (glassy) 
mate r ia l  and  r the re laxa t ion  time. 

F o r  organic  mater ia ls ,  bounde d  by  secondary  forces, 
the shear  modu lus  is o f  the o rder  o f  1 G P a  9'1°. 
The m i n i m u m  value o f  r will co r r e spond  to the 
molecu la r  v ib ra t ion  t imes, i.e. to a b o u t  10 -14 10 -13 s. 
This leads to a l imit ing viscosi ty o f  10 5-10 4 Pas ,  jus t  
as found  exper imenta l ly  4-6. van Kreve len  and Hoft~czer s 
much  lower l imit ing viscosities (down to 10 Pas )  
would  comple te ly  con t rad ic t  this general ly  accepted 
theoret ica l  picture.  
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